使用 OPENCV Python 进行颜色检测和选择
在今天的文章中,我们将讨论如何使用 OpenCV-python 从图像或视频内容中检测和选择颜色。
在开始之前,想指出你需要与本文一起完成的先决条件。首先,考虑到你已经了解编程,你需要知道如何在 OpenCV-python 中读取和显示图像。
读取和显示图像
这里的第一步是使用 opencv 从图像文件中读取和显示图像。为此,我们将使用下面的代码片段:
import cv2
# read the image into memory
img = cv2.imread("./images/image1.jpg")
# resise the image
img = cv2.resize(img, (640, 480))
# create a window named image and display the image inside of it.
cv2.imshow("Image", img)
# wait untill a any key is pressed to quite the program
cv2.waitKey(0)
创建 Trackbar 滑动条
为了检测图像中的颜色,我们需要将图像转换为 HSV(Hue Saturation Value)图像。此图像比例将允许用于在给定的 UPPER 和 LOWER 范围内选择颜色。
在本节中,让我们继续编写代码来创建滑动条,并从滑块中提取值作为用户输入。
为此,我们的代码需要进行更多更改。它现在应该是这样的。
import cv2
import numpy as np
def do_nothing():
pass
# create slider here
cv2.namedWindow("Slider")
cv2.resizeWindow("Slider", 640, 480)
cv2.createTrackbar("Hue Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Hue Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Max", "Slider", 0, 255, do_nothing)
img = cv2.imread("./images/image1.jpg")
img = cv2.resize(img, (640, 480))
while True:
# extract the values from the trackbar
hue_min = cv2.getTrackbarPos("Hue Min", "Slider")
hue_max = cv2.getTrackbarPos("Hue Max", "Slider")
sat_min = cv2.getTrackbarPos("Saturation Min", "Slider")
sat_max = cv2.getTrackbarPos("Saturation Max", "Slider")
val_min = cv2.getTrackbarPos("Value Min", "Slider")
val_max = cv2.getTrackbarPos("Value Max", "Slider")
print(hue_min, hue_max, sat_min, sat_max, val_min, val_max)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cv2.destroyAllWindows()
将图像转换为 HSV 比例
现在我们能够让滑块和滑动条正常工作,让我们继续将我们的图像转换为 HSV 比例,然后能够在特定颜色范围内选择颜色。
我们可以用第35行的代码做到这一点
import cv2
import numpy as np
def do_nothing():
pass
# create slider here
cv2.namedWindow("Slider")
cv2.resizeWindow("Slider", 640, 480)
cv2.createTrackbar("Hue Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Hue Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Max", "Slider", 0, 255, do_nothing)
img = cv2.imread("./images/image1.jpg")
img = cv2.resize(img, (640, 480))
while True:
# extract the values from the trackbar
hue_min = cv2.getTrackbarPos("Hue Min", "Slider")
hue_max = cv2.getTrackbarPos("Hue Max", "Slider")
sat_min = cv2.getTrackbarPos("Saturation Min", "Slider")
sat_max = cv2.getTrackbarPos("Saturation Max", "Slider")
val_min = cv2.getTrackbarPos("Value Min", "Slider")
val_max = cv2.getTrackbarPos("Value Max", "Slider")
# print(hue_min, hue_max, sat_min, sat_max, val_min, val_max)
# convert to HSV image
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cv2.destroyAllWindows()
得到我们想要的颜色的上下界
现在我们已经将图像转换为 HSV 比例,我们将更多地了解我们想要检测和选择的颜色的上限和下限。我们分别使用第35行和第36行的代码来执行此操作。
注意:确保此时已导入 numpy,否则会出现一些错误,numpy 预装了 OpenCV-Python。
import cv2
import numpy as np
def do_nothing():
pass
# create slider here
cv2.namedWindow("Slider")
cv2.resizeWindow("Slider", 640, 480)
cv2.createTrackbar("Hue Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Hue Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Max", "Slider", 0, 255, do_nothing)
img = cv2.imread("./images/image1.jpg")
img = cv2.resize(img, (640, 480))
while True:
# extract the values from the trackbar
hue_min = cv2.getTrackbarPos("Hue Min", "Slider")
hue_max = cv2.getTrackbarPos("Hue Max", "Slider")
sat_min = cv2.getTrackbarPos("Saturation Min", "Slider")
sat_max = cv2.getTrackbarPos("Saturation Max", "Slider")
val_min = cv2.getTrackbarPos("Value Min", "Slider")
val_max = cv2.getTrackbarPos("Value Max", "Slider")
# print(hue_min, hue_max, sat_min, sat_max, val_min, val_max)
# set bounds
lower_bound = np.array([hue_min, sat_min, val_min])
upper_bound = np.array([hue_max, sat_max, val_max])
# convert to HSV image
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cv2.destroyAllWindows()
创建一个掩码并将其用于 Bitwise_and 操作
现在,我们需要创建一个图像掩码,并使用它来执行按位操作,使用用户使用滑动条设置的 UPPER 边界和 LOWER 边界。
这将使我们能够选择该颜色范围内的颜色。我们的代码现在应该如下所示,分别在第43行和第46行进行了更改。
在第50行,我们简单地显示图像。现在你可以调整滑块并选择你选择的不同颜色。
import cv2
import numpy as np
def do_nothing():
pass
# create slider here
cv2.namedWindow("Slider")
cv2.resizeWindow("Slider", 640, 480)
cv2.createTrackbar("Hue Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Hue Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Max", "Slider", 0, 255, do_nothing)
img = cv2.imread("./images/image1.jpg")
img = cv2.resize(img, (640, 480))
while True:
# extract the values from the trackbar
hue_min = cv2.getTrackbarPos("Hue Min", "Slider")
hue_max = cv2.getTrackbarPos("Hue Max", "Slider")
sat_min = cv2.getTrackbarPos("Saturation Min", "Slider")
sat_max = cv2.getTrackbarPos("Saturation Max", "Slider")
val_min = cv2.getTrackbarPos("Value Min", "Slider")
val_max = cv2.getTrackbarPos("Value Max", "Slider")
# print(hue_min, hue_max, sat_min, sat_max, val_min, val_max)
# set bounds
lower_bound = np.array([hue_min, sat_min, val_min])
upper_bound = np.array([hue_max, sat_max, val_max])
# convert to HSV image
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# create mask
mask = cv2.inRange(hsv_img, lower_bound, upper_bound)
# we perform bitwise and operation here
resulting_img = cv2.bitwise_and(img, img, mask=mask)
# display the image here
cv2.imshow("Image", resulting_img)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cv2.destroyAllWindows()
最后的润色
现在我们已经做到了这一点,让我们堆叠图像以获得更好的演示。可以在此代码段中找到此代码。
在第46行,我们创建了一个堆叠图像并将其显示在第49行。
import cv2
import numpy as np
def do_nothing():
pass
# create slider here
cv2.namedWindow("Slider")
cv2.resizeWindow("Slider", 640, 480)
cv2.createTrackbar("Hue Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Hue Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Saturation Max", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Min", "Slider", 0, 255, do_nothing)
cv2.createTrackbar("Value Max", "Slider", 0, 255, do_nothing)
img = cv2.imread("./images/image1.jpg")
img = cv2.resize(img, (640, 480))
while True:
hue_min = cv2.getTrackbarPos("Hue Min", "Slider")
hue_max = cv2.getTrackbarPos("Hue Max", "Slider")
sat_min = cv2.getTrackbarPos("Saturation Min", "Slider")
sat_max = cv2.getTrackbarPos("Saturation Max", "Slider")
val_min = cv2.getTrackbarPos("Value Min", "Slider")
val_max = cv2.getTrackbarPos("Value Max", "Slider")
# set bounds
lower_bound = np.array([hue_min, sat_min, val_min])
upper_bound = np.array([hue_max, sat_max, val_max])
# convert to HSV image
hsv_img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# create mask
mask = cv2.inRange(hsv_img, lower_bound, upper_bound)
resulting_img = cv2.bitwise_and(img, img, mask=mask)
stacked_imgs = np.hstack([img, resulting_img])
# create a stacked image of the original and the HSV one.
cv2.imshow("Image", stacked_imgs)
if cv2.waitKey(1) & 0xFF == ord("q"):
break
cv2.destroyAllWindows()
结论
有关该项目的视频说明,请查看:
原文标题:使用 OPENCV Python 进行颜色检测和选择
-
Python 3 显示图像的方法
2022-08-15 -
用python实现网表分模块统计面积
2022-07-04 -
使用Python进行面部识别
2022-05-12 -
Python中OpenCV的基础知识
2022-05-09 -
使用OpenCV,构建文档扫描仪
2022-05-09 -
使用Python和docTR提取车辆识别号
2022-03-25 -
使用计算机视觉的颜色选择器应用程序
2022-03-14 -
在OpenCV中使用图像像素
2022-03-03 -
使用OpenCV进行虚拟缩放
2022-03-01 -
使用OpenCV在Python中进行图像操作
2022-02-14 -
python的数字与字符串相互转换
2022-01-24 -
使用 OpenCV 开发虚拟键盘
2021-11-24 -
Python画矩阵关系图
2021-08-18 -
如何用Python从头开始构建VGG Net?
2021-08-05 -
QuecPython SDK正式开源
2021-07-19